
(1) Resolution – swinging apertometer

Numerical aperture – measure of the ability of the lens to capture diffracted / scattered light.

Numerical aperture, NA = nsinα

n = refractive index of the medium between the object (specimen) and the objective lens

$$n_{air} = 1.0003 \approx 1$$

				X X			
Angle 1	Angle 2	Collection angle	Half angle, α	Measured NA	Actual* NA	Resolution* (µm)	Depth of field* (µm)
				_//\	ocal plant	Back	* 12
				M.	avibosid	110	-
			Object				
4		1		> WW -	uhaqA pr	Huminati	
				4/ =			X.

- Calculate the N.A for:

 144°
 lens
 specimen
- What if we increase the collection angle to 164°?
- The Abbe formula to calculate lateral resolution is:

 $d = \lambda/2NA$

The approximate formula to calculate depth of field is:

depth of field = $n\lambda/NA^2$

 \bullet For calculations using white light, assume a wavelength of 500 nm (0.5 μ m).